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The structure of normal modes in viscous compressible plane Couette flow is 
investigated. The spectrum is found to consist of two types of modes: the viscous 
modes, which obtain finite phase velocities by the mechanism of mode pairing ; and 
the sonic modes, whose phase velocity becomes distorted in the supersonic regime. 
This leads to mode crossings which unfold, depending on the type of crossing modes, 
either into purely sonic or viscous-sonic instability bands. The latter provide a new 
example for viscous instability. Both mode pairing of viscous modes and distortion 
of the phase velocity of sonic modes is caused by the shear. Critical Reynolds 
numbers for the instabilities are derived. 

1. Introduction 
The stability of plane Couette flow is a standard problem in fluid mechanics and 

has been investigated by many authors. An excellent summary of the results 
obtained so far is given in Drazin & Reid (1981). While viscous incompressible 
Couette flow has been studied in great detail and seems to be stable (Gallagher & 
Mercer 1962, 1964 and Gallagher 1974), only a few authors have studied the effect of 
compressibility on the stability of shear flows in the context of fluid mechanics (see 
Blumen, Drazin & Billings 1975; Drazin & Davey 1977 and references given 
there). 

The compressibility of matter may certainly be neglected in subsonic flows but 
must be taken into account when considering supersonic flows. Such flows occur in 
various astrophysical situations, e.g. in accretion disks, in the solar wind and at the 
boundaries of galactic and extragalactic jets. In this context the stability of 
compressible supersonic shear flows has recently become of great interest, since a 
variety of instabilities have been found (see e.g. Drury 1985; Papaloizou & Pringle 
1984, 1985, 1987; Goldreich, Goodman & Narayan 1986; Narayan, Goldreich & 
Goodman 1987 and Ray 1982). These sonic instabilities already occur in the simplest 
case of inviscid supersonic plane Couette flow, which has been studied in detail by 
Glatzel (1988). 

In  all investigations done so far either viscous incompressible or inviscid 
compressible flows have been considered. The combined effect of viscosity and 
compressibility on the stability of a shear flow is still an open question and will be 
studied in this paper for the simplest case of plane Couette flow. 

For sufficiently small Reynolds numbers viscosity has a stabilizing effect and we 
expect the sonic instabilities occurring in the inviscid flow to become damped, where 
the determination of the critical Reynolds number at  which marginal stability is 
reached is of particular interest. This is the main motivation for studying the viscous 
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flow and will be done in $§6 and 7. In  §$2-5 we shall derive the relevant equations 
for this purpose and discuss the modifications of the modal structure due to viscosity 
as compared with the inviscid flow. 

Although viscosity stabilizes a t  sufficiently small Reynolds numbers, there are 
situations (e.g. plane Poiseulle flow) where it leads to an instability a t  high Reynolds 
numbers and we have speculated in an earlier paper (Glatzel 1987b) that some kind 
of viscous instability might occur in viscous compressible shear flows too. In  
discussing the modal structure we shall therefore be particularly interested in how 
such an instability is generated, provided it exists. 

2, Basic equations 
2.1. The stutiomry $ow 

We consider a plane shear layer where the velocity V is taken in the x-direction and 
varies linearly with z ( V  = z )  from z = - 1 to z = + 1. Lengths and velocities are 
measured respectively in units of half of the thickness of the shear layer and the flow 
speed a t  the edge of the shear layer. Sound speed a,, density p and pressure p are 
taken to be constant and the Mach number M is defined as the ratio of the flow speed 
a t  the edge of the shear layer ( x  = + 1) and the sound velocity. For simplicity we 
assume that both the dynamical shear viscosity 71 and the volume viscosity [ are 
constant within the flow and for convenience we define three Reynolds numbers 

ZO K P  Re, = -, 
71 

where z, and are respectively the half-thickness of the shear layer and the velocity 
a t  the edge of the shear layer. Rigid boundary conditions are assumed at z = k 1, 
which can take up any normal and shear stress but require the velocity of thc flow 
to be equal to  the velocity of the boundary a t  the boundary's position. 

2.2. The equations governing small deviations from the stationary Jlow 

A flow with the properties given in $2.1 corresponds to an exact solution of the 
Navier-Stokes equation. I ts  linear stability will be considered in the following, where 
the supersonic regime is of particular interest. The relation between the pressure 
perturbation jj and the density perturbation p" is given by 

j j = a 2 -  OP> (2.4) 
where uo denotes the adiabatic or isothermal sound velocity. Momentum and 
continuity equations are linearized in the usual way and, owing to  the symmetries 
of the problem, the perturbations are taken to be proportional to 
exp [ ik (w t+z+  ( k , / k )  y)]. Denoting the perturbed velocity by u and defining 

we find 
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Boundary conditions for the perturbed quantities follow from the requirement that  
the fluid has to move with the boundary: 

v, = v, = v, = 0 a t  x = 41. (2.10) 

2.3. Squire's theorem for viscous compressible Jlows 

Squire's theorem can be extended to viscous compressible flows by the following 

K 2  = k 2 +  ki, transformation : (2.11) 

k'vj. = kv, + k, wy, (2.12) 

@f = p- ;  ,k' p"' = p-'  ,k v; = v,, (2.13) 
k k' ' 

0 f k '  =o--, (2.14) 
k 

k 1 lk'. 1 1 L '  a;=a,--; -=-- -=-- 
k Re: Re,, k' Re; Re, k ' (2.15) 

By this transformation the general three-dimensional problem is equivalent to a two- 
dimensional one in the primed quantities (kj, = vj, = 0). In  the following we shall 
therefore consider only two-dimensional perturbations. Equation (2.14) shows that 
two-dimensional perturbations are the most unstable ones : for each unstable three- 
dimensional perturbation there exists a more unstable two-dimensional perturbation. 
However, we emphasize that the Reynolds numbers and the sound velocity, i.e. the 
Mach number, have to be transformed too, when three-dimensional and two- 
dimensional perturbations are compared in this way. 

2.4. The perturbation equation 

The perturbation equations for a two-dimensional perturbation having k, = v, = 0 
may be condensed into a single differential equation for the pressure perturbation. 
Using (2.4)-(2.9) we find 
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Similarly the boundary conditions (2.10) may be expressed in terms of j5 and its 
derivatives : 

- z( l+- izfp)+sre)+$j( = 0 ;  z = f l ,  (2.17) 

If the shear viscosity vanishes (Re,+cO) we get instead of (2.16)-(2.18) for the 
perturbation equation 

For zero shear viscosity the tangential components of the flow velocity and the 
boundary velocity need not be identical any more. I n  this case the boundary 
conditions reduce to v, = 0 a t  z = f 1, which may also be written as 

i W  
(2.20) 

The perturbation equation (2.16) or (2.19) together with the boundary conditions 
(2.17) and (2.18) or (2.20) poses an eigenvalue problem for the complex pattern speed 
o which is solved numerically using a Riccati method (details are given in the 
Appendix). Its solutions will be discussed in the following sections. 

2.5. Singularities of the perturbation equation 

The perturbation equation (2.19) for vanishing shear viscosity has two singularities 
for = 0 and 1 + ikii'M2/Re, = 0, whereas the perturbation equation (2.16) for the 
general case has only one singularity for 1 +ik8M2/Re,, = 0. Owing to these 
singularities the solution of the eigenvalue problem depends on the choice of the 
integration path in the complex plane used for the integration of (2.16) and 
(2.19). 

The correct integration path can be obtained by considering the initial-value 
problem associated with the perturbation equations and applying to  them a Laplace 
transform with respect to time (see Case 1961 and Lin 1961 or Glatzel 1987a). The 
Laplace transform formalism then yields Landau's (1946) prescription for the 
integration path which has been used for the solution of the eigenvalue problem : the 
integration path from z = - 1 to z = + 1 in the complex plane has to pass any 
singularity - in our normalization - below the singularity. For growing modes the 
integration path can always be taken along the real axis, 

Associated with each of the singularities is a continuous spectrum. The singularity 
of (2.19) for ii' = 0 corresponds to the inviscid incompressible continuum which 
disappears for finite shear viscosity. The second singularity for 1 + ik#M2/fie,,,, = 0 
is associated with a viscous compressible continuum which disappears for zero 
viscosity or for an incompressible flow (M = 0). Accordingly, only the spectrum of a 
medium a t  rest and of a viscous incompressible flow is entirely discrete. The latter 
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is consistent with the fact that  the spectrum of the Orr-Sommerfeld problem is 
discrete (cf. Drazin & Reid 1981) to which (2.16)-(2.18) reduce in the incompressible 
limit and after a transformation of the dependent variable. In  the following we shall 
restrict ourselves to a detailed discussion of the discrete spectrum only. 

3. The limit of low Mach numbers 
3.1. Medium at rest 

One way of realizing the limit of low Mach numbers (M+O)  physically is to  keep the 
sound velocity fixed and to decrease the flow velocity. The limit M + O  then 
corresponds to a (viscous) compressible medium a t  rest. Perturbation equations and 
boundary conditions for this case are found from (2.4)-(2.10) with = 0:  

(3.3) a% with w, = 0 ,  --+ikwW(@/p) a Z  = 0 a t  z = ~f: 1. 

Equation (3.1) is still valid for Re,-+m whereas (3.2) then determines w, by a 
differentiation of the solution of (3.1). In  this limit the boundary conditions reduce 
to  v, = 0 a t  z = f 1, which is equivalent to a(r?;/p)/ax = 0 at x = & 1 (see also 52.4). 

I n  a medium a t  rest a physically meaningful definition of Mach and Reynolds 
numbers is not possible. Therefore the Mach and Reynolds numbers occurring in this 
Section have to be regarded as the suitably normalized inverse of the sound velocity 
and the viscosity respectively. The reason to keep the definition of Mach and 
Reynolds numbers is to enable a direct comparison between the medium a t  rest and 
the compressible viscous shear flow. 

The solution of the perturbation equations (3.1) and (3.2) can be given analytically 
as a superposition of exponential functions, where the integation constants and the 
dispersion relation for w are determined by the boundary conditions. For Re, + co we 
obtain the dispersion relation 

n2 1 k 2 W (  I 
wM = 1+&29--- [ k2 4 Re: 

; n p = o ,  fl, *2  ).... (3.4) 

The dispersion relation (3.4) describes a twofold infinite set of modes which are 
damped by viscosity. If the viscosity vanishes these modes are identical with the 
neutrally stable standing sound waves of the system as discussed in an earlier paper 
(Glatzel 1988). For zero Mach number, which corresponds to infinite sound velocity 
or incompressibility, the discrete spectrum is empty, since an incompressible medium 
cannot support internal waves and edge waves are excluded by the boundary 
conditions. Therefore the modes given by (3.4) are the standing sound waves of the 
system which are damped by viscosity. No further modes are introduced by a finite 
viscosity. 
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For finite Re, and Rep we find the dispersion relation 

with 

(3.5) 

and p2 = k2( 1 + iwRe,/k). (3.7) 

In  general the dispersion relation (3.5)-(3.7) has to be solved for w numerically. 
However, more physical insight is gained from explicit approximate solutions. For 
a/?/kz 9 1 the dispersion relation (3.5) can be split into two separate explicit 
dispersion relations : 

and (3.9) 

The eigenvalues given by (3.8) and (3.9) are close to the exact cigenvalues for large 
values of Inp] and Inv/. For small lnpl and lnvl the agreerncnt becomes worse. In 
particular, modes corresponding to  nv = 0, ? 1 do not exist. Furthermore, the 
approximation (3.8) is not valid for low values of M .  In  the limit M - t  0 we find the 
following behaviour from (3.5)-(3.7) for the type of modes described by the 

(3.10) 
approximation (3.8) : wM = w , + o , M ~ + O ( M ) ,  

with 

and 

. np = 0 ,  
w 2  = 1 1  1 

I 4w:ikRe,' 

(3.11) 

(3.12) 

(3.13) 

where the sign of o1 has to be chosen that corresponds to a damped mode. 
The modes described by (3.8) or (3.10)-(3.13) have qualitatively the same 

behaviour as the modes given by (3.4) discussed above. I n  particular, they both 
disappear for M + O ,  i.e. in the incompressible limit and their inviscid limits are 
identical. Therefore they arc thq standing sound waves of the system, which are 
damped by shear and volume viscosity. The damping by shear viscosity is 
proportional to M-i for M + O  rather than having a finite limit as for pure volume 
viscosity. 

The second part of the spectrum described by (3.9) and consisting of damped non- 
oscillating modes is independent of the Mach number M and is already present in an 
incompressible medium. However, these modes disappear for zero shear viscosity 
(Re, + 00) .  Therefore their physical origin is the shear viscosity and we shall call them 
viscous modes in the following. 
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3.2. Incompressible flow 
The second way of realizing the limit of low Mach numbers physically consists of 
keeping the flow velocity fixed and increasing the sound velocity. Then the limit 
M + 0 corresponds to a (viscous) incompressible shear flow. Perturbation equation 
and boundary conditions for this case are given by (2.16)-(2.18) where M is set to 
zero. For zero shear viscosity the eigenvalue problem becomes identical with the 
inviscid incompressible problem. It is well known that in this case the discrete 
spectrum is empty (see Drazin & Reid 1981). Note that all terms involving the 
volume viscosity disappear forM = 0. In  addition, the singularity in the perturbation 
equation is no longer present. 

The stability of a viscous incompressible linear shear flow is a standard problem in 
fluid mechanics and has been studied by many authors (for a review see Drazin & 
Reid 1981). The perturbation equation for this problem is usually expressed in terms 
of a stream function as dependent variable and is known as the Orr-Sommerfeld 
equation. In  fact, if we rewrite the perturbation equation (2.16) and the boundary 
conditions (2.17) and (2.18) for M = 0 in terms of a stream function instead of the 
pressure perturbation j? as dependent variable we arrive a t  the Orr-Sommerfeld 
equation in its standard form. Therefore the solutions of (2.16)-(2.18) contain the 
solutions of the Orr-Sommerfeld equation. In  particular, the results given in a paper 
by Gallagher (1974) should be identical with the eigenvalues obtained from 
(2.16)-(2.18) with M = 0. 

For later comparison and in order to check our analysis we have redone some of 
Gallagher’s (1974) calculations. Our results are shown in figure 1 where the 
eigenvalues are plotted as a function of the Reynolds number for k = 1. In table 1 we 
have listed the first eigenvalues for k = 1 and Re, = lo3 together with the eigenvalues 
given by Gallagher (1974). Table 1 and figure 1 show reasonable agreement with 
Gallagher’s results. In  addition to the first eigenvalues of the viscous modes of the 
incompressible shear flow we have listed in table 1 the eigenvalues of the viscous 
modes of the corresponding medium a t  rest, both as given by (3.5)-(3.7) and by the 
approximation (3.9). Equation (3.9) provides an excellent approximation to the 
exact eigenvalue, in particular for large values of lnvl. Furthermore, for large values 
of lnvl or small values of the Reynolds number Re, the influence of the shear flow is 
small compared to the influence of viscosity and may be neglected. Accordingly, in 
this limit the modal structure of the viscous incompressible shear flow is given by the 
spectrum of the modes for the medium a t  rest, which can immediately be verified 
from table 1. We have used this limiting behaviour to order and identify the viscous 
modes in the shear flow with their counterparts in the medium at  rest. All eigenvalues 
shown in figure 1 and table 1 are therefore labelled with the value of Invl of the 
corresponding mode given by equation (3.9). 

As the influence of the shear flow is increased by an increasing Reynolds number 
or decreasing InvJ the non-oscillating damped modes begin to pair, thus forming two 
oscillating modes travelling in opposite x-directions and having the same damping 
rate (see figure 1 ) .  The order of pairing depends on the wavenumbers Ic and Inv\ (see 
also Gallagher 1974). With increasing Reynolds number, paired modes eventually 
unpair and a t  even higher Reynolds numbers pair again in a different order. Paired 
oscillating modes are labelled with the two values of 1+1 of the corresponding non- 
oscillating unpaired modes. For Re, --f 00 the real parts of the pattern speed w of the 
oscillating modes approach f l  (see figure 1 ) .  At a particular finite value of the 
Reynolds number Re, and M = 0 we are thus left with a finite number of paired 
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FIGURE 1. (a) Damping rates and ( b )  pattern speeds of the viscous modes in the incompressible flow 
(M = 0) for the wavenumber k = 1 as a function of the Reynolds number. The curves are labelled 
with lnvl or, in the case of pairing, with the values of lnvl of the two originally unpaired modes. 

oscillating and an infinite number of unpaired non-oscillating damped viscous modes 
(see table 1 ) .  

4. The limit of zero viscosity 
Perturbation equations and boundary conditions for Re, + co and Rep + co follow 

directly from (2.19) and (2.20). I n  this limit the perturbation equation can be solved 
analytically in terms of confluent hypergeometric functions. A detailed discussion of 
the properties of the modes in this case may be found in Glatzel (1988) and we shall 
restrict ourselves to  a brief summary of the main results. 

Since the vorticity is constant in the flow considered and we have adopted rigid 
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Medium at rest 

In,l 
40 
39 
38 
37 
36 
35 
34 
33 
32 
31 
30 
29 
28 
27 
26 
25 
24 
23 
22 
21 
20 
19 
18 
17 
16 
15 
14 
13 
12 
11 
10 
9 
8 
7 
6 
5 
4 
3 
2 

Approximation 

3.9488 
3.7539 
3.5639 
3.3789 
3.1988 
3.0236 
2.8533 
2.6880 
2.5276 
2.3722 
2.2217 
2.0761 
1.9354 
1.7997 
1.6690 
1.5431 
1.4222 
1.3063 
1.1952 
1.089 1 
0.9880 
0.8917 
0.8004 
0.7141 
0.6327 
0.5562 
0.4846 
0.4180 
0.3563 
0.2996 
0.2477 
0.2009 
0.1589 
0.1219 
0.0898 
0.0627 
0.0405 
0.0232 
0.0109 

Im (w) 

Exact 

3.9473 
3.7513 
3.5624 
3.3762 
3.1972 
3.0209 
2.8518 
2.6854 
2.5261 
2.3695 
2.2201 
2.0735 
1.9339 
1.7971, 
1.6674 
1.5405 
1.4207 
1.3036 
1.1937 
1.0865 
0.9864 
0.8891 
0.7989 
0.7115 
0.6311 
0.5535 
0.4831 
0.4154 
0.3548 
0.2969 
0.2462 
0.1982 
0.1574 
0.1193 
0.0883 
0.0601 
0.0389 
0.0206 
0.0093 

Im (w) 

Shear flow 
~ 

This paper 

Re ( w )  

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

-0.0619 
+0.0619 
-0.0260 
+0.0260 
-0.2366 
+0.2366 
-0.1981 
+ 0.1981 
-0.4373 
+0.4373 

+0.3838 

+0.6811 

+0.6063 

-0.3838 

- 0.681 1 

-0.6053 

Im ( w )  

3.9264 
3.7295 
3.5393 
3.3521 
3.1715 
2.9940 
2.8231 
2.6552 
2.4938 
2.3355 
2.1835 
2.0348 
1.8921 
1.7529 
1.6193 
1.4894 
1.3648 
1.2441 
1.1281 
1.0163 
0.9087 
0.8057 
0.7058 
0.6197 
0.6197 
0.4991 
0.4991 
0.5226 
0.5226 
0.3839 
0.3839 
0.4183 
0.4183 
0.2653 
0.2653 
0.2962 
0.2962 
0.1192 
0.1192 

Gallagher (1974) 

TABLE 1. The eigenvalues w of the first viscous modes for k = 1, M = 0 and Re, = loa. The second 
and third column contain the damping rates of the non-oscillating modes in a medium a t  rest 
according to the exact dispersion relation (3.5)-(3.7) (column 3) and the approximation (3.9) 
(column 2),  where the order parameter In,l occurring in (3.9) is given in column 1. The 
corresponding eigenvalues of the viscous modes in the shear flow are listed in columns 4 and 5, 
where the eigenvalues calculated by Gallagher (1974) are shown for comparison in column 5. 

boundary conditions the only type of modes that can exist in the inviscid flow are 
sound waves. For the description of sound waves the appropriate limit of low Mach 
numbers consists of keeping the sound velocity fixed and decreasing the flow 
velocity. As described in 33.1 we then obtain for M+O a twofold infinite set of 
standing sound waves travelling in opposite z-directions which are given by (3.4) 
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M 
FIGURE 2. ( a )  Pattern speeds and ( b )  growth or damping rates of the sonic modes in the inviscid 
flow for the wavenumber k = 1 as a function of the Mach number. The curves are labelled with 
)npl + 1, where the sign indicates the 2-direction of the wave. Instability bands are labelled with 
lnpl + 1 of the two modes producing the instability by resonance. 

with 1/Re,, = 0. Equation (3.4) is still a reasonable approximation to the pattern 
speed w for increasing M until the flow speed becomes comparable with the pattern 
speed of the mode. As the Mach number is increased even more, the pattern speed 
becomes equal to the flow velocity a t  some position IzI < 1, i.e. the mode reaches a 
critical layer within the flow. The shear then causes the pattern speed of the mode 
to approach the velocity of the boundary moving in the same direction as the mode 
for M = 0. Thereby we obtain mode crossings between the two sets of modes which 
for M = 0 moved in opposite z-directions. These mode crossings unfold into bands of 
instabilities, i.e. into a pair of complex-conjugate eigenfrequencies. (For the general 
treatment of mode crossings see Cairns 1979 and Glatzel 1 9 8 7 ~ ) .  
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For later comparison with the viscous case we have plotted in figure 2 the real part 
of the pattern speed w and the imaginary part of the eigenfrequency = wk for k = 1 
as a function of the Mach number M .  Except for the instability bands all modes are 
neutrally stable. For IRe (w)l > 1, i.e. if the mode does not have a critical layer within 
the flow, u is approximately given by (3 .4)  with 1/Re, = 0. Accordingly we have 
labelled the modes in figure 2 with lnpl + 1 .  Owing to the symmetry of the problem 
we have for each value of lnpl two modes (cf. (3 .4) )  moving in opposite 2-directions. 
(The direction of propagation is indicated by a superscript of the label.) The 
resonances are labelled with the values of InJ+l of the two associated crossing 
modes. This convention will also be used in the subsequent sections. 

5. The modal structure of viscous compressible flow 
We have shown in $3.1 that the spectrum for a viscous compressible medium at  

rest in general consists of two sets of modes : the viscous modes and the sonic modes. 
Since the vorticity gradient in the flow considered here vanishes and we had to adopt 
rigid boundary conditions, no further modes are introduced by the flow itself. 
Therefore the modes found in viscous compressible plane Couette flow either belong 
to  the viscous type or to  the sonic type, where pure volume viscosity only allows for 
sonic modes, since a finite shear viscosity is necessary for the existence of viscous 
modes. 

For simplicity we shall restrict ourselves in the following to the investigation of 
pure shear (6 = 0) and pure volume viscosity (7 = 0). The general case is qualitatively 
merely a superposition of the two extreme cases. In  $$5.1 and 5.2 the sonic and the 
viscous part of the spectrum for g = 0 will be studied and in $5.3 their interaction will 
be discussed. The purely sonic spectrum for 7 = 0 is described in $5.4.  

5.1. The sonic modes for 6 = 0 
As long as the pattern speed of a sonic mode is large compared to  the flow speed, i.e. 
for IRe(w)l 9 1 ,  the dispersion relation for the modes in the medium a t  rest (see 
(3.5)-(3.7) and (3.10)-(3.13)) yields a good approximation for the modes in the flow. 
This holds in particular for the limit of low Mach numbers and according to 
(3.10)-(3.13) we expect the damping rate to be proportional to  M-i for M + O .  The 
pattern speed, being close to its inviscid value, approaches a finite limit for M + O  
when normalized by the sound velocity instead of by the flow velocity. (Frequencies 
in the two normalizations differ by a factor M.) 

In order to demonstrate this behaviour of the sonic modes in the limit M + O  
explicitly, we have plotted as full lines in figure 3 the eigenfrequencies of the first 
three sonic modes (notation as in figure 2 )  for Re, = lo3 (Rep = 3Re,) in a medium at 
rest according to (3.5)-(3.7). (OM is the pattern speed in units of the sound speed.) 
Dots represent the eigenfrequencies of the corresponding modes according to the full 
problem and dashed lines denote the flow velocities a t  the boundaries. It is 
particularly obvious in figure 3 that the pattern speed of a mode is approximately 
given by the pattern speed of the corresponding mode in the medium a t  rest until i t  
becomes comparable with the flow speed. The shear then distorts the pattern speed 
of the modes, thus producing mode crossings and bands of instabilities. 

In  figure 4 we have plotted in a different range growth and damping rates and the 
pattern speed of the first three modes for Re, = lo3 as a function of the Mach number. 
For (Re (u)l < 1 and large Reynolds numbers Re, the eigenvalues are close to the 
inviscid limit (see $4 and figure 2). However, owing to an intrinsic damping by 
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FIGURE 3. (a) Pattern speeds in units of the sound velocity and ( b )  growth or damping rates of the 
first three sonic modes for k = I and Re, = lo3 (RelL = 3Re,) as a function of the Mach number are 
represented by dots. Full lines show the eigenvalues of the corresponding modes in a medium at 
rest and dashed lines denote the velocities of the two boundaries of the flow. The curves are labelled 
as in figure 2. The viscous instability of the sonic mode having 1nJ + 1 = 1 is denoted by (1, V) .  

viscosity, modes crossing at Re ( w )  =I= 0 do not coincide in the imaginary part of their 
eigenfrequency and there is no exact crossing of eigenvalues. As a consequence real 
and imaginary parts of the eigenfrequencies a t  a crossing having Re ( w )  =I= 0 are now 
uniquely attached to a particular mode. 

For a mode corresponding to some value of lnpl + 1 the lnpl crossings denoted 
by (n, Inp] + 1) having n < Inp] + 1 show enhanced damping while crossings with 
n > lnpl + 1 show decreased damping or even instability. The crossing with 
n = JnPJ + 1 always occurs a t  Re ( w )  = 0 and is for symmetry reasons an exact 
crossing. It shows the typical instability band as in the inviscid case. However, 
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the imaginary parts of the eigenfrequencies are shifted by the intrinsic viscous 
damping rate of the crossing modes. 

The intrinsic damping of the modes by viscosity increases with the Mach number, 
since the terms involving the viscous damping in (2.19) are proportional toM2/Re,,. 
Superimposed on the intrinsic damping rates are the resonance effects as described 
above. 

From figure 4 we find that viscosity has a strong stabilizing influence on the sonic 
resonance instabilities. At Re, = lo3 the mode with lnpl + 1 = 3 is entirely stabilized 
and the mode having InJ+ 1 = 2 shows instability only at the (2,2) resonance. The 
exact determination of critical Reynolds numbers for the sonic instabilities will be 
given in §$6 and 7. 

5.2. The viscous modes for 6 = 0 

Pattern speeds and damping rates of the viscous modes whose incompressible limit 
was described in $3.2 are plotted as a function of the Mach number for Re,, = lo3 in 
figure 5 (notation as in figure 1) .  While the non-oscillating modes are almost 
independent of compressibility, the oscillating viscous modes show a weak 
dependence and change their order pairwise as the Mach number is increased. This 
may eventually lead to an unpairing of a mode (see figure 5 ) .  

The pairwise changed order of the viscous modes a t  high Mach numbers is due to 
a different pairing pattern of the non-oscillating viscous modes when compressibility 
is important. In figure 6 we have plotted the eigenfrequencies of the viscous modes 
as a function of the Reynolds number for k = 1 and fixed Mach number M = 10. 
Except for the range of very low Reynolds numbers, which will be discussed in the 
next section, the mode pairing occurs in a much simpler way than in the 
incompressible case shown in figure 1. The order of modes both in the real and 
imaginary parts of their eigenvalues is always the same and pairing occurs only 
between two neighbouring modes. 

5.3. Coupling between sonic and viscous modes (6 = 0) 
At low Reynolds numbers we have observed in figure 6 a rather complicated modal 
structure obviously involving not only viscous modes. If we follow the additional 
modes to higher Reynolds numbers we can identify them with the first three sonic 
modes. Accordingly the label nS in figure 6 denotes a sonic mode having lnpl + 1 = n. 
The modal structure at low Reynolds numbers in figure 6 may then be explained 
by a crossing of the (2 ,3)  viscous mode and the first three sonic modes, where the 
resonances or crossings give rise to a variety of different types of mode coupling. The 
( (2 ,3) ;  2 s )  crossing has unfolded into an ordinary avoided crossing whereas the 
( (2 ,3) ;  35) and the (2; 1s) crossings yield much more complicated patterns. 

Another type of interaction between sonic and viscous modes occurs a t  high 
Reynolds numbers. If we follow the eigenfrequency of a sonic mode (see figures 3 and 
4) from zero Mach number, the imaginary part starts to deviate with increasing Mach 
number from the limit of a medium a t  rest by reaching a higher damping rate 
initially. For higher Mach numbers the damping rate decreases again - the higher 
modes undergo a maximum in the damping rate - and, depending on the Reynolds 
number and the mode, either a minimum in the damping rate or even an instability 
is found. These minima or instability bands respectively - labelled ( n , V )  with 
n = lnpl + 1 - are absent in the inviscid case (figure 2). Accordingly viscosity may be 
regarded as the origin of this instability. At Re,, = lo3 only the mode with In,/ + 1 = 1 
exhibits the instability while for higher Reynolds numbers the minimum of the 
damping rate turns into an instability for the higher modes also. Critical Reynolds 
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numbers for these instabilities will be given in $86 and 7. The modal structure of the 
sonic modes for even higher Mach numbers has already been described in 35.1. 

If we now follow the viscous modes from M = 0 we find with increasing Mach 
number for the two lowest modes denoted by (2,3) and (4,5) apart from the general 
trend several maxima in the damping rate labelled with (n ,V)  in figure 5 .  At the 
position of these maxima, the pattern speed of these modes also seems to be slightly 
distorted (see figure 56  near the label (1, V)). I n  order to  show this behaviour more 
clearly and to allow for a direct comparison with the relevant sonic modes we have 
plotted in figure 7 the damping rates of the (2 ,3)  and the (4,5) viscous modes on a 
different scale as a function of the Mach number for Re, = lo3 and k = 1. 

Since the pattern speed of the oscillating viscous modes always lies within the 
range of the flow speed and depends only slightly on the Mach number we inevitably 
get crossings of the pattern speed between the sonic and the viscous modes. 
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FIGURE 4. Same as figure 2 for the first three sonic modes in a viscous flow having Re,,= lo3 
(Re, = 3Re,). Growth and damping rates of the modes with lnpl + 1 = 1 , 2 , 3  are shown in ( b ,  c,  d )  
respectively. Viscous resonances are denoted by (n, V) with n = Inp] + 1. 

Comparing figures 4 and 5 we find that the distortion of the pattern speed of the 
viscous modes (2,3) and (4,5) labelled with (1, V) occurs just around their crossing 
with the sonic mode having InJ + 1 = 1. Furthermore, the maxima in the damping 
rate of these viscous modes together with the minima in the damping rate or the 
instabilities of the sonic modes both denoted by (n,V) occur exactly at the Mach 
number where their pattern speed crosses the pattern speed of the sonic mode with 
Inp[ + 1 = n (see figures 4, 5 and 7) .  

This phenomenon is explained in a natural way by the resonant interaction of a 
viscous mode and a sonic mode where the coupling leads to an enhanced damping of 
the viscous mode and a decreased damping or even a band of instability of the sonic 
mode. The closer the eigenfrequencies of the crossing viscous and sonic modes are, 
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FIGURE 5. (a)  Damping rates and ( b )  pattern speeds of the firlrt viscous modes for k = 1 and 
Re, = 10s (Re, = 3Re,) as a function of the Mach number The curves are labelled as in figure 1 
The position of resonances with sonic modes having = Inp/ + 1 are denoted by (n, V). Kote the 
unpairing of the mode labelled (16,17).  

the more pronounced is this effect, i.e. for example the viscous mode (2,3) having the 
lowest damping rate shows it most clearly (cf. figure 7). 

The mechanism of this viscous instability is identical with the mechanism 
producing the sonic instabilities a t  infinite Reynolds numbers by resonant interaction 
of sonic modes and may be interpreted in terms of the energy of a mode, as described 
in detail in Glatzel (1987b). Two modes whose energy has different sign exchange 
energy by resonant interaction. Thereby the amplitude of both of them can grow 
without bound, even if the energy of the entire system is to be conserved. 

We are thus left with the following details about how viscosity can be responsible 
for instabilities. Viscosity is the origin of a discrete spectrum of damped modes 
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having zero pattern speed. The shear causes the modes to pair, thus forming modes 
with a finite pattern speed, which are still damped. Compressibility provides a 
spectrum of sound waves, whose pattern speed can coincide with the pattern speed 
of the paired viscous modes in the supersonic regime. The resonances of paired 
viscous and sonic modes unfold into bands of instabilities. In this sense viscosity can 
have a destabilizing effect just by providing a discrete spectrum of modes. Together 
with a second spectrum of different physical origin, instabilities occur via mode 
crossings. 

5.4. The sonic modes for 7 = 0 
Concerning the viscous damping of the modes at higher Mach numbers, the structure 
of the sonic resonances and the pattern speed, we find qualitatively the same 
behaviour as in the case of pure shear viscosity discussed in $5.1 (see figure 4). Plots 
have therefore been omitted. The only differences to the sonic modes for g = 0 occur 
in the damping rates for low Mach numbers. 

In contrast to the case 5 = 0 discussed in $5.1 and plotted in figure 4 the intrifraic 
damping by viscosity may undergo a minimum as the Mach number decreases and 
has a finite limit for M +  0. Since the limit M+ 0 for the sonic modes corresponds to 
a medium at rest, these limits of the damping rate should be compared with the 
damping rates of the corresponding modes in a medium at rest as given by (3.4). In 
fact, they become identical for M + 0. Owing to zero shear viscosity viscous modes do 
not exist here and viscous resonances and instabilities do not occur in the sonic 
modes. 

6. Marginal stability 
In the previous sections we have studied the modal structure of viscous 

compressible plane Couette flow. In  order to identify the different types of modes and 
to  describe their physical properties it was convenient to discuss the dispersion 
relations for a fixed perturbation, i.e. for fixed wavenumber k, as a function of the 
flow properties, i.e. the Mach number M .  However, for the determination of critical 
Reynolds numbers it is more meaningful to consider the stability of a particular flow 
(fixed M )  for various perturbations, i.e. as a function of the wavenumber k. 

For the inviscid case it can be verified from analytical approximations that the 
dispersion relations are symmetric with respect to an interchange of the Mach 
number M and the wavenumber k (see Glatzel 1988). This symmetry also holds 
approximately for the exact equations and the viscous flow. Therefore the modal 
structure as a function of M for fixed k is qualitatively identical with the modal 
structure as a function of k for fixed M ,  which is the appropriate basis for the 
determination of critical Reynolds numbers. 

In order to demonstrate this we have plotted in figure 8 pattern speeds and growth 
rates of the sonic modes in the inviscid flow as a function of the wavenumber for fixed 
Mach number M = 20. Figure 8 should be compared with figure 2. In figure 9 
damping and growth rates of the first three sonic modes are shown as a function of 
k around the viscous-sonic resonances forM = 4 and Re, = lo5 (Re, = 3Re,). Note the 
similarity of figure 9 and figure 4. Close to  the maximum growth rates in figure 9 we 
find secondary flat maxima at slightly higher wavenumbers. While the first maxima 
are caused mainly by resonance with the lowest viscous mode, the secondary maxima 
are due to resonances with higher viscous modes. Since the strength of a resonance 
depends on how close the eigenvalues of the modes become a t  a crossing of their 
pattern speed, the resonance with the first viscous mode is always the strongest and 
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resonances with higher viscous modes are clearly seen only a t  very high Reynolds 
numbers. For the same reason we expect with increasing Reynolds number more and 
more viscous-sonic resonance instability bands to appear, similar to the multiple 
resonances of the sonic modes in the inviscid limit. 

So far we have determined the complex eigenfrequency w for given wavenumber 
k, Mach number M and Reynolds numbers Re, and Re, by integrating the 
perturbation equation and iterating w until the boundary conditions were satisfied. 
In  order to derive critical Reynolds numbers for an instability it is necessary to 
calculate the Reynolds number where it becomes marginally stable, i.e. where the 
imaginary part of the eigenfrequency vanishes. Therefore we have to  iterate here, 
instead of the complex eigenfrequency w ,  its real part Re(w) and the Reynolds 
number Re, for given k, M and Im ( w )  = 0. In  the following we shall for simplicity 
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FIGURE 6. Same as figure 1 but for finite compressibility (M= 10). Note the different pairing 
pattern of the viscous modes and the coupling with the first sonic modes labelled nS with 
n = In,l+l. 

restrict ourselves to pure shear viscosity, where the two Reynolds numbers are 
related by Re, = 3Re,. For a given flow (fixed M )  we then obtain the Reynolds 
number of marginal stability as a function of the wavenumber k. However, since the 
instabilities occur in bands, we have to determine for each instability band its curve 
of marginal stability. These are shown in figure 10 for M = 20 and the purely sonic 
resonances of the first three sonic modes. As the higher instability bands merge, in 
particular for lower Reynolds numbers, the curve of marginal stability becomes 
continuous for the higher resonances. For Reynolds numbers below all the curves of 
marginal stability the flow is stable. If it lies above one of these curves, there is at 
least one unstable perturbation. The minima of the curves of marginal stability are 
the critical Reynolds numbers. According to the fact that each instability band has 
its own curve of marginal stability, we can define a critical Reynolds number for each 
resonance. These critical Reynolds numbers still depend on the flow parameters, i.e. 
on the Mach number M .  

For the viscous-sonic resonances we can in a similar way define critical Reynolds 
numbers and calculate curves of marginal stability. These are plotted for M = 4 and 
the first three sonic modes in figure 11 and exhibit a much more complicated 
structure than those for the purely sonic resonances. In particular, there are 
wavenumbers where several Reynolds numbers correspond to  marginal stability for 
a given resonance. At low Reynolds numbers this behaviour is reminiscent of the 
curve of marginal stability for the viscous instability of plane Poiseulle flow (see 
Drazin & Reid 1981). With increasing Reynolds number the width of the instability 
strip widens suddenly, due to the instability caused by resonances with the higher 
viscous modes. The curves of marginal stability separate regions of stability and 
instability in the (k, Re,)-diagram, where the regions enclosed by the curves 
correspond to instability as indicated in figure 11. We emphasize, however, that the 
domains of stability and instability refer only to the particular resonances indicated 
in figures 10 and 11. For a complete picture of the instability of the flow all 
resonances have to be considered simultaneously. 
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FIGURE 7. The damping rate of (a) the (2,3) viscous mode and (b) the (4,5) viscous mode for 
k = 1 and Re, = lo3 (Re = 3ReJ as a function of the Mach number. Around the resonances with 
the sonic modes labelle$ (n, V) (n = 1n,1+ 1) local maxima of the damping rate are found. 

7. Critical Reynolds numbers 
The critical Reynolds number of a particular instability band depends on the flow 

parameters, i.e. on the Mach number M ,  and is shown in figure 12 for the resonances 
indicated. For each instability band the critical Reynolds number has a minimum for 
some value of M .  For higher values the critical Reynolds number increases, since 
both the growth rates of the instabilities decrease with M and the damping by 
viscosity is proportional to WIRe,, (see $5.1). The increase for smaller values of M 
is caused by the fact that the instabilities only exist for supersonic shear velocities. 
In  addition, for an instability band to occur close to sonic velocity one needs high 
wavenumbers, which imply higher viscous damping and therefore lead to higher 
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FIGURE 8. (a) Pattern speeds and ( b )  growth rates of the sonic modes in the inviscid flow for the 
Mach numberM = 20 as a function of the wavenumber. The curves are labelled with Inp[ + 1, where 
the sign indicates the 2-direction of the wave. Instability bands are labelled with InJ + 1 of the two 
modes producing the instability by resonance. 

critical Reynolds numbers. The critical wavenumbers, i.e. the wavenumbers for 
which the critical Reynolds numbers are attained, are plotted as a function of M in 
figure 13 for the same resonances as in figure 12. 

Basically the critical Reynolds number is determined by two effects : the strength 
of the instability, i.e. its growth rate in the inviscid limit ; and the viscous damping 
which is proportional to the square of the wavenumber of the perturbation. 
Therefore the resonances with the higher inviscid growth rates have in general the 
smaller critical Reynolds numbers. However, the order of the critical Reynolds 
numbers is not always the same, e.g. the (2,2) resonance has a smaller critical 
Reynolds number than the (1,4) resonance for small Mach numbers and a higher 
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FIGURE 9. Damping and growth rates of the first three sonic modes characterized by Inp( + 1 as a 
function of the wavenumber around the viscous-sonic resonances labelled (In,( + 1, V) for the Mach 
number M = 4 and the Reynolds number Re, = lo6 (Re, = 3Re,). 
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FIGURE 10. Curves of marginal stability for the sonic resonances indicated and the Mach 
number M = 20. 

critical Reynolds number for large Mach numbers, which may be interpreted as the 
competing effects of viscous damping and the strength of the instability. Comparing 
the purely sonic and the viscous-sonic resonances we find that the sonic resonances 
(due to higher inviscid growth rates) have lower critical Reynolds numbers for high 
Mach numbers, whereas for low Mach numbers the viscous-sonic resonances have 
lower critical Reynolds numbers, which is caused by their lower critical wavenumbers 
(see figure 13). We note that for a given sonic mode the viscous-sonic resonance 
always occurs a t  a lower wavenumber than the sonic resonances. Therefore the 
minimum critical Reynolds number, below which the flow is stable with respect to 
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FIGURE 11 .  Curves of marginal stability for the viscous-sonic resonances indicated and the 
Mach number M = 4. 
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FIGURE 12. Critical Reynolds numbers for the sonic and the viscous-sonic resonance instabilities 
indicated as a function of the Mach number. Kote that the minimum critical Reynolds number is 
determined by the (1,  V) viscous-sonic resonance for low Mach numbers. 

all perturbations, is determined by the viscous-sonic (1 ,  V) resonance for low Mach 
numbers and by the purely sonic ( 1 , l )  resonance for higher Mach numbers (see figure 
12). The most unstable flow, i.e. the flow with the lowest minimum critical Reynolds 
number, has M = 4.86. I ts  minimum critical Reynolds number Re, = 83.54 with a 
critical wavenumber of k = 0.971 is given by the ( 1 , l )  resonance. 

We emphasize that the critical Reynolds numbers derived here refer to pure shear 
viscosity (6 = 0). I n  general one would have to determine the critical Reynolds 
numbers including both shear and volume viscosity, i.e. as a function of the ratio 
ReJRe,, 2 5. However, according to 55.4 a finite volume viscosity has a stabilizing 
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FIGURE 13. Critical wavenumbers for the sonic and the viscous-sonic resonance instabilities 
indicated as a function of the Mach number. 

effect and we expect the amount of shear viscosity necessary to achieve marginal 
stability to become smaller, i.e. the critical Reynolds numbers Re,, will increase with 
increasing Re,/Rep. 

8. Conclusion 
We have investigated the modal structure of compressible viscous plane Couette 

flow. In general the discrete spectrum consists of two sets of modes, which owe their 
existence to compressibility and viscosity respectively. Both of them can already be 
found in a medium at rest. If the flow speed is zero, the shear viscosity gives rise to 
a discrete spectrum of purely damped non-oscillating modes, whereas compressibility 
provides a discrete spectrum of damped sound waves having a finite pattern 
speed. 

As the flow speed is increased the viscous modes pair, thus attaining a finite 
pattern speed but still remaining damped, whereas the pattern speed of the sonic 
modes becomes distorted by the shear. The distortion of the pattern speed of the sonic 
modes and the effect of mode pairing which gives the viscous modes a finite pattern 
speed leads to crossings of the pattern speed both among the sonic modcs and 
between the paired viscous and the sonic modes. They always occur in the supersonic 
regime, since the pattern speed of the sonic modes is supersonic before it becomes 
distorted for supersonic flow velocities. At  all of these resonances or crossings the 
damping rate of one of the crossing modes is enhanced while the damping of the 
second is decreased. At high Reynolds numbers the decrease in damping even leads 
to a band of instability around the resonance. 

According to the particular crossing we may distinguish between purely sonic and 
viscous-sonic resonances. However, the appearance of the resonance and the 
instability band does not depend on the particular physical nature of the crossing 
modes. It seems that only the resonance and not any other physical effect is 
responsible for the instabilities. In this sense the viscous instability at  the 
viscous-sonic resonances is an indirect effect : the role of viscosity is just to provide 
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an additional discrete spectrum. We suspect that this way of interpreting viscous 
instabilities may also be viable in other situations. If the instability mechanism is 
independent of the physical nature of the crossing modes we could imagine that 
crossings between viscous and vortical or gravity or any other type of modes lead to 
instability bands in the same way as the crossings of viscous and sonic modes. 

Critical Reynolds numbers have been derived for the various instabilities. For low 
Mach numbers the minimum critical Reynolds number is determined by the first 
viscous-sonic resonance, and for higher Mach numbers by the first sonic resonance. 
For M - t O  and M +  cx, the critical Reynolds numbers tend to infinity, where the 
minimum can be as low as 83.54 a t  M = 4.86 for the first sonic resonance. 

Appendix. Numerical solution of the perturbation equation 
In  order to solve (2.16) with the boundary conditions (2.17) and (2.18) we rewrite 

it as a system of four first-order equations and introduce new dependent variables 
ul, u, and vl, v2 as 

i p( i y e r )  +- a2@(3ikM2) - 
u 2 = -  - l+- 

2k az3 az2 Re,,,, 

a@ 
- az 2, --. 

Defining the vectors u and v as 

and the matrices A,  B, C, D as 

with 

A = (  0 1  ); B = C :  
A1 0 

0 0  

A ,  = ik@Re,,+ k2, 

3, = -ik@W, 

B, = ikMa(l+?), 

B, = Re,,+ik@W 

- 2% 
I + ik@W/Re,, ' 

c, = 

18 
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k2 - k2M2@' + ik3@M2/Re,, 
1 + ik@M2/Re,, 

- 2ikJM2/Re,, 

D, = 7 

D -  
- 1 + ik@W/Re,, ' 

the system of differential equations can be written as 

U' = Au+ Bv, V' = CU + Dv, (A 14) 
where a prime denotes differentiation with respect to z and the boundary conditions 
are given by 

u = 0 ;  z = & l .  

Since it suffers from the parasitic growth problem (see Drazin & Reid 1981), the 
numerical solution of the system (A 14) together with the boundary conditions (A 15) 
using an initial-value method is not possible. However, this difficulty can be 
overcome by the Riccati method as described by Scott (1973) and Davey (1977). (For 
a short summary of the method and further references see also Drazin & Reid 1981.) 
Instead of integrating u and v we solve the differential equation for the (complex) 
Riccati matrix R defined by 

U = R V  (A 16) 

From equation (A 14) we find the differential equation for R :  

R '=  B+AR-RD-RCR. (A 17) 

Equation (A 17) is integrated from z = - 1 to z = + 1 where the boundary condition 
(A 15) requires the initial condition (see Davey 1977) 

R = O ;  ~ = - l ,  (A 18) 

andissat isf iedatz=+l  if de tR=O;  z = + l .  (A 19) 

The condition (A 19) is used to determine the complex pattern speed w or, for given 
k ,  1M and Im ( w )  = 0, its real part and the Reynolds number Re, (see $6). Thus the 
problem of finding eigenvalues is reduced to the problem of finding the complex zeros 
of a complex function. 

Integration and iteration of (A 17) and (A 19) can be done using any standard 
routine, e.g. DOBCAF and C05NBF from the NAG library. By choosing the error 
bounds in these routines as small as possible, the eigenvalues could be calculated with 
a relative accuracy better than lo-". To check the accuracy of the Riccati method 
we have also calculated the eigenvalues of the Orr-Sommerfeld problem for in- 
compressible plane Poiseulle flow. A comparison with the very accurate results given 
by Orszag (1971) which were obtained using Chebyshev expansions showed perfect 
agreement. The time necessary to calculate an eigenvalue sensitively depends on the 
parameters and the required accuracy. On the average we needed 1 s per eigenvalue 
on a CRAY-XMP for a relative accuracy of 

The Riccati matrix may become singular on the integration path chosen. In this 
case the path of integration was deformed in the complex plane as suggested by Davey 
(1977). Occasionally the convergence of the eigenvalue iteration can be considerably 
accelerated if (A 17) with the initial condition (A 18) is integrated from z = - 1 and 
z = + 1 to some intermediate point, which yields two Riccati matrices. Continuity of 
the variables then requires the determinant of the difference of the two matrices to 
vanish, which can be used instead of (A 19) to iterate the eigenvalue. 
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